سفارش تبلیغ
صبا ویژن

سوخت هسته ای چیست؟

 

ماده‌ای که به عنوان سوخت در راکتورهای هسته‌ای مورد استفاده قرار می‌گیرد باید شکاف پذیر باشد یا به طریقی شکاف پذیر شود.235U شکاف پذیر است ولی اکثر هسته‌های اورانیوم در سوخت از انواع 238U است.

نحوه آزاد شدن انرژی هسته‌ای

 

می‌دانیم که هسته از پروتون (با بار مثبت) و نوترون (بدون بار الکتریکی) تشکیل شده است. بنابراین بار الکتریکی آن مثبت است. اگر بتوانیم هسته را به طریقی به دو تکه تقسیم کنیم، تکه‌ها در اثر نیروی دافعه الکتریکی خیلی سریع از هم فاصله گرفته و انرژی جنبشی فوق العاده‌ای پیدا می‌کنند. در کنار این تکه‌ها ذرات دیگری مثل نوترون و اشعه‌های گاما و بتا نیز تولید می‌شود. انرژی جنبشی تکه‌ها و انرژی ذرات و پرتوهای بوجود آمده ، در اثر برهمکنش ذرات با مواد اطراف ، سرانجام به انرژی گرمایی تبدیل می‌شود. مثلا در واکنش هسته‌ای که در طی آن 235U به دو تکه تبدیل می‌شود، انرژی کلی معادل با 200MeV را آزاد می‌کند. این مقدار انرژی می‌تواند حدود 20 میلیارد کیلوگالری گرما را در ازای هر کیلوگرم سوخت تولید کند. این مقدار گرما 2800000 بار برگتر از حدود 7000 کیلوگالری گرمایی است که از سوختن هر کیلوگرم زغال سنگ حاصل می‌شود.

 

کاربرد حرارتی انرژی هسته‌ای

 

گرمای حاصل از واکنش هسته‌ای در محیط راکتور هسته‌ای تولید و پرداخته می‌شود. بعبارتی در طی مراحلی در راکتور این گرما پس از مهارشدن انرژی آزاد شده واکنش هسته‌ای تولید و پس از خنک سازی کافی با آهنگ مناسبی به خارج منتقل می‌شود. گرمای حاصله آبی را که در مرحله خنک سازی بعنوان خنک کننده بکار می‌رود را به بخار آب تبدیل می‌کند. بخار آب تولید شده ، همانند آنچه در تولید برق از زعال سنگ ، نفت یا گاز متداول است، بسوی توربین فرستاده می‌شود تا با راه اندازی مولد ، توان الکتریکی مورد نیاز را تولید کند. در واقع ، راکتور همراه با مولد بخار ، جانشین دیگ بخار در نیروگاه‌های معمولی شده است.

 

سوخت راکتورهای هسته‌ای

 

ماده‌ای که به عنوان سوخت در راکتورهای هسته‌ای مورد استفاده قرار می‌گیرد باید شکاف پذیر باشد یا به طریقی شکاف پذیر شود.235U شکاف پذیر است ولی اکثر هسته‌های اورانیوم در سوخت از انواع 238U است. این اورانیوم بر اثر واکنشهایی که به ترتیب با تولید پرتوهای گاما و بتا به 239Pu تبدیل می‌شود. پلوتونیوم هم مثل 235U شکافت پذیر است. به علت پلوتونیوم اضافی که در سطح جهان وجود دارد نخستین مخلوطهای مورد استفاده آنهایی هستند که مصرف در آنها منحصر به پلوتونیوم است. 

میزان اورانیومی که از صخره‌ها شسته می‌شود و از طریق رودخانه‌ها به دریا حمل می‌شود، به اندازه‌ای است که می‌تواند 25 برابر کل مصرف برق کنونی جهان را تأمین کند. با استفاده از این نوع موضوع ، راکتورهای زاینده‌ای که بر اساس استخراج اورانیوم از آب دریاها راه اندازی شوند قادر خواهند بود تمام انرژی مورد نیاز بشر را برای همیشه تأمین کنند، بی آنکه قیمت برق به علت هزینه سوخت خام آن حتی به اندازه یک درصد هم افزایش یابد.

 

مزیتهای انرژی هسته‌ای بر سایر انرژیها

 

بر خلاف آنچه که رسانه‌های گروهی در مورد خطرات مربوط به حوادث راکتورها و دفن پسماندهای پرتوزا مطرح می‌کند از نظر آماری مرگ ناشی ازخطرات تکنولوژی هسته‌ای از 1 درصد مرگهای ناشی از سوختن زغال سنگ جهت تولید برق کمتر است. در سرتاسر جهان تعداد نیروگاههای هسته‌ای فعال بیش از 419 می‌باشد که قادر به تولید بیش از 322 هزار مگاوات توان الکتریکی هستند. بالای 70 درصد این نیروگاه‌ها در کشور فرانسه و بالای 20 درصد آنها در کشور آمریکا قرار دارد.

 

همجوشی خورشید و ستارگان

 

سالهاست که دانشمندان واکنشی را که در خورشید و ستارگان رخ داده و در آن انرژی تولید می کند کشف کرده اند. این واکنش عبارت است از ترکیب (برخورد) هسته های چهار اتم هیدروژن معمولی و تولید یک هسته اتم هلیوم.اما مشکلی سر راه این نظریه است. 

بالا ترین دمایی که در خورشید وجود دارد مربوط به مرکز آن است که برابر 15ضرب در 10 به توان 6 می باشد.در حالی که در ستارگان بزرگتر این دما به 20 ضرب در ده به توان 6 می رسد. به همین خاطر تصور بر این است که آن واکنش معروف ترکیب چهار اتم هیدروژن معمولی و تولید یک اتم هلیم در سایر ستارگان بزرگ نیست که باعث تولید انرژی می شود. بلکه احتمالا چرخه کربن در آنها به کمک آمده و کوره آنها را روشن نگه می دارد.منظور از چرخه کربن آن چرخه ای نیست که روی زمین اتفاق می افتد. بلکه به این صورت است که ابتدا یک اتم هیدروژن معمولی با یک اتم کربن C12 ترکیب می شود (همجوشی) و یک اتم N13 به علاوه یک واحد گاما را آزاد می کند. بعد این اتم با یک واپاشی به یک اتمC13به علاوه یک پوزیترون و یک نوترینو تبدیل می شود.بعد اینC13دوباره با یک اتم هیدروژن ترکیب می شود وN14و یک واحد گاما حاصل می شود.دوباره در اثر ترکیب این نیتروژن با یک هیدروژن معمولی اتمO15و یک واحد گاما تولید می شود.O15واپاشی کرده و N15به علاوه یک پوزیترون ویک نوترینو را بوجود میاورد.و دست آخر با ترکیب N15با یک هیدروژن معمولیC12به علاوه یک اتم هلیوم بدست می آید.

 

محصور سازی

 

مشکلی اساسی سر راه همجوشی هسته‌ای است ; می دانیدهسته ازذرات ریزی تشکیل شده است که پروتون ونوترون جزءلاینفک آن هستند.نوترون بدون بار وپروتون با بار مثبت که سایربارهای مثبت رابه شدت از خود میراند.مشکل مشخص شد؟ بله…اگرپروتونها (هسته های هیدروژن) یکدیگررادفع میکنند چگونه میتوان آنهارا در همجوشی شرکت داد؟ 

همانطورکه حدس زدید راه حل اساسی آن است که به این پروتونها آنقدر انرژی بدهیم که انرژی جنبشی آنها بیشتر از نیروی رانش کولنی آنها شود و پروتونها بتوانند به اندازه کافی به هم نزدیک شوند. حال چگونه این انرژی جنبشی را تولید کنیم؟ گرما راه حل خوبیست. در اثر افزایش دما جنب و جوش وبه عبارت دیگرانرژی جنبشی ذرات بیشتر و بیشتر میشود به طوری که تعداد برخوردها و شدت آنها بیشتر و بیشتر میشود.به نظر شما آیا دیگر مشکلی وجود ندارد؟ خیر,مسئله اساسیتری سر راه است. 

یک سماور پر از آب را تصور کنید.وقتی سماور را روشن می کنید با این کار به آب درون سماور گرما میدهید(انرژی منتقل می کنید).در اثر این انتقال انرژی دمای آب رفته رفته بالاتر می رود و به عبارتی جنب و جوش مولکولهای آب زیاد می شود.در این حالت بین مولکولهای آب برخوردهایی پدید می آید.هر مولکول که از شعله(یا المنت یا هر چیز دیگری)مقداری انرژی دریافت کرده است آنقدر جنب و جوش می کند تا بالاخره (به علت محدود بودن محیط سماور و آب)انرژی خود رابه دیگری بدهد.مولکول بعدی نیز به نوبه خود همین عمل را انجام میدهد.بدین ترتیب رفته رفته انرژی منبع گرما در تمام آب پخش می شود و دمای آب بالا میرود.خوب یک سوال:آیا وقتی بدنه سماور را لمس می کنیم هیچ گرمایی حس نمی کنیم؟…بله حس میکنیم.دلیلش هم که روشن است.برخورد مولکولهای پر انرژی آب با بدنه سماور و انتقال انرژی خود به آن.هدف ما از روشن کردن سماور گرم کردن آب بود نه سماور.امیدوارم تا اینجا پاسخ اولین مشکل اساسی بر سر راه همجوشی را دریافت کرده باشید.بله اگر اگر با صرف هزینه و زحمت بالا سوخت را به دمایی معادل میلیونها درجه کلوین برسانیم آیا این اتمها آنقدر صبر خواهند کرد تا با دیگر اتمها وارد واکنش شوند یا در اولین فرصت انرژی بالای خود را به دیواره داده وآن را نا بود میکند؟(…شما بودید چه می کردید؟؟؟…).بنابر این نیاز به ((محصور سازی)) داریم; یعنی باید به طریقی اجازه ندهیم که این گرما به دیواره منتقل شود.

 

رسیدن به دمای بالا

 

شروع واکنش همجوشی به دمای بسیار بالایی نیازمند است.درست است که دمای پانزده میلیون درجه دمای بسیار بالایست و تصور بوجود آوردنش روی زمین مشکل و کمی هم وحشتناک می باشد ولی معمولا در زندگی روزمره دور و برمان دماهای خیلی بالایی وجود دارند و ما از آنها غافلیم.مثلا وقتی در اثر اتصالی سیمهای برق داخل جعبه تقسیم میسوزد وشما صدای جرقه آنرا میشنوید و پس از بررسی متوجه می شوید که کاملا ذوب شده فقط به خاطر دمای وحشتناکی بوده که آن تو به وجود آمده.شاید باور نکنید ولی این دما به حدود سی-چهل هزار درجه کلوین میرسد.البته این دما برای همجوشی حکم طفل نی سواری را دارد.یا اینکه می توانیم با استفاده از ولتاژهای بسیار بالا قوسهای الکتریکی را از درون لوله های مویین عبور بدهیم.به این ترتیب دمای هوای داخل لوله که اکنون به پلاسما تبدیل شده به نزدیک چند میلیون درجه می رسد.(که باز هم برای همجوشی کم است).یکی از بهترین راهها استفاده از لیزر است.می دانید که لیزرهایی با توانهای بسیار بالا ساخته شده اند.مثلا نوعی از لیزر به نام لیزر نوا(NOVA)می تواند در مدت کوتاهی انرژی ای معادل ده به توان پنج ژول تولید کند.اما بازهم در کنار هر مزیت معایبی هست.مثلا این لیزر تبعا انرژی زیادی مصرف میکند که حتی با صرف نظر از آن مشکل دیگری هست که میگوید اگر انرژی تولیدی لیزر در آن مدت کوتاه باید تحویل داده بشود پس برای برقرار ماندن معیار لاوسن (حالا که مدت زمان محصور سازی پایین آمده)باید چگالی بالا تر برود.که در این مورد از تراکم و چگالی جامد هم بالا تر میرود.

 

انواع واکنشها

 

برای بهینه سازی کار رآکتورهای همجوشی و افزایش توان خروجی آنها راههای متعددی وجود دارد.یکی از این راهها انتخاب نوع واکنشیست که قرار است در رآکتور انجام بشود. 

ظبق تصویر زیر نوعی از واکنش همجوشی بصورتیست که در آن دو هسته سبک با یکدیگر واکنش داده و یک هسته سنگین تر را بوجود میاورند.یعنی حاصل ترکیب دو هسته دوتریم و تولید یک هسته ترتیم به علاوه یک هسته هیدروژن معمولیست. این واکنش انرژی ده می باشد.چون تفاوت انرژی بستگی هسته سنگین تر وهسته های سبکتر مقداری منفیست. 

در این واکنش مقدار انرژی ای تولیدی برابر4MeVمی باشد. 

قبلا گفته شد که باید برای انجام همجوشی هسته ها به اندازه کافی به هم نزدیک بشوند.این مقدار کافی حدودا معادل3fmمی باشد.چون در این فاصله ها انرژی پتانسیل الکترواسناتیکی دو دوترون در حدود 0.5MeVهست پس می توانیم با این مقدار انرژی دادن به یکی از دوترونها دافعه کولنی بین دوترونها ر شکسته و واکنش را شروع کنیم که بعد از انجام مقدار4.5MeVتولید می شود.(0.5MeVانرژی جنبشی به علاوه 4MeVانرژی آزاد شده) 

می توانیم رآکتور خود را طوری طراحی کنیم که دور دیواره بیرونی آن لیتیم مایع تحت فشار جریان داشته باشد.این لیتیم مایع گرمای تولیدی اضافی را از واکنش گرفته و به آب منتقل می کند و با تبدیل آن به بخار باعث می شود که توربین و ژنراتور به حرکت درآیند و برق تولید بشود.

 

اما چرا لیتیم؟

 

قبلا دیدید که مقرون به صرفه ترین واکنش در رآکتور همجوشی واکنش دوتریم . ترتیم است.در این واکنش دیدید که یک نوترون پر انرژی تولید می شد.این مساله یعنی نوترون زایی می تواند سبب تضعیف بخشهایی از رآکتور شود.از طرفی برای محیط زیست و مخصوصا سلامتی کسانی که در اطراف رآکتور فعالیت می کنند بسیار مضر است.اما اگر لیتیم را به عنوان خنک کننده داشته باشیم این جریان لیتیم همچنین نقش مهم کند کنندگی را بازی خواهد کرد.به این صورت که با نوترون اضافی تولید شده در واکنش ترکیب شده و سوخت گران قیمت و بسیار کمیاب رآکتور رو که همان ترتیم است تولید می کند.واکنش دقیق آن به شکل زیر است.البته در این مورد باید ضخامت لیتیم مایع در جریان حداقل یک متر باشد.

 

انواع رآکتور

 

توکامک یکی از انواع رآکتورهای همجوشی هسته ایست که عمل محصورسازی را به خوبی انجام میدهد.طرح توکامک در دهه پنجاه میلادی توسط روسها پیشنهاد شد. واژه توکامک از واژه های "toroidalnaya ", "kamera ", and "magnitnaya " به معنی " اتاقک مغناطیسی چنبره ای " گرفته شده است. 

یکی از دلایل و توجیحاتی که برای چنبره ای بودن محفظه های محصور سازی می شود بیان کرد این است که : توپ پر مویی را تصور کنید که شما قصد دارید موهای این توپ را شانه بزنید. شما هر طور و از هر طرف که بخواهید این کار بکنید همیشه دو طرف از موهای توپ شانه نشده و نامنظم باقی می ماند.حال به جای توپ فرض کنید که یک کره مغناطیسی داریم .میخواهیم که بردارهای میدان در سراسر اطراف این کره یکنواخت و منظم باشند(در واقع همه در یک جهت باشند).بنا به مثال این کار غیر ممکن بوده ونا منظمی در دو طرف کره باعث عدم پایداری محصور ساز می شود.ولی در یک محصور ساز چنبره ای چنین مشکلی وجود ندارد و یکنواختی میدان سراسر محصور ساز(توکامک)باعث پایداری آن می شود.مهم ترین و حیاتی ترین وظیفه یک ابزار همجوشی پایدار نگه داشتن پلاسما است.

 

اسفرومک

 

اسفرومک نوع دیگری از رآکتورهای همجوشیست که بر خلاف توکامک که چنبره ایست شکلی کروی دارد.البته تفاوت اسفرومک با توکامک در این است که در مرکز اسفرومک هیچ جسم مادی ای وجود ندارد. 

اسفرومک متاسفانه با بی مهری مواجه شد و به اندازه توکامک مورد توجه واقع نشد.در حالی که اسفرومک مدت زیادی بعد از توکامک اختراع شد. 

در دهه گذشته اغلب تحقیقات در بخش انرژی همجوشی مغناطیسی روی توکامک چنبره ای شکل برای رسیدن به واکنشهای همجوشی در سطح بالا متمرکز شده است. 

کار توکامک در ایالات متحده وخارج آن ادامه دارد ولی سازمان دانشمندان انرژی همجوشی در حال بازدید از اسفرومک هستند. 

قسمت زیادی از علاقه تجدید شده به پروژه اسفرومک روی تحقیقات فعالی در لاورنس لیورمور در گروهی به نام SSPX (Sustained Spheromak Physics Experiment) متمرکز شده است.SSPX در 14ژوئن 1999 در مراسمی با حضور نماینده ای از DOE و با همکاری دانشمندانی از Sandia و آزمایشگاه ملی لس آلاموس آغاز به کار کرد.SSPX یک سری از از آزمایشات است که برای این طراحی شده که توانایی اسفرومک را در این مورد که اسفرومک چقدر این کیفیت را داراست که پلاسما های داغ سوخت همجوشی را درون خود داشته باشد مشخص کند . 

به عقیده رهبر پروژه SSPX آقای David Hill توکامک با دمای بالایی که در آن قابل دسترسیست (بیشتر از 100میلیون درجه سلسیوس که بارها بیشتر از دمای مرکز خورشید است)فعلا برنده جریان رهبری پروژه های همجوشی به حساب می آید.با این حال میدانهای مغناطیسی توکامک بوسیله کویل (سیم پیچ) های بیرونی بسیار بزرگ که چنبره رآکتور را کاملا احاطه می کنند تولید می شوند.این کویل های بسیار بزرگ هزینه بسیار زیاد و بی نظمی و اختلالاتی در کار رآکتور خواهند داشت. 

در حالی که اسفرومک ها پلاسمای بسیار داغ را در یک سیستم میدان مغناطیسی ساده و فشرده که فقط از یک سری ساده از کویل های کوچک پایدار کننده استفاده میکند بوجود می آورد.میدانهای مغناطیسی قوی لازم درون پلاسما با چیزی که دینام مغناطیسی نامیده می شود تولید می شوند.

 

انرژی‌ده کردن

 

می دانید درنوعی از رآکتورهای شکافت هسته ای بوجود آوردن زنجیره واکنشها بوسیله برخورد دادن یک نوترون پر انرژی با هسته یک اتم اورانیم235 انجام می شود.به این صورت که وقتی که این نوترون وارد هسته اتم اورانیوم235 می شود آن را به یک هسته اورانیم236 تبدیل میکند.از آنجا که این هسته ناپایدار است به سرعت واپاشی می کرده و اتمهای سبکتری به همراه سه نوترون پر انرژی دیگر را تولید می کند. 

توضیح کاملتر اینکه در هسته های سنگین پایدار مثل اورانیوم بین نیروهای الکترواستاتیکی که مایل هستند ذرات تشکیل دهنده اتم را از هم دور کنند و نیروی هسته ای که آنها را کنار هم نگه میدارد تعادل بسیار حساسی وجود دارد که این تعادل رو می توانیم براحتی و به روشی که گفته شد به هم زده و واکنش شکافت هسته ای را شروع کنیم.واکنش حاصل از یک اتم با تولید کردن سه نوترون پر انرژی دیگر باعث میشود سه اتم اورانیم دیگر وارد واپاشی بشوند.به همین ترتیب واکنش اصطلاحا زنجیره ای میشود. 

قدر مسلم یک رآکتور همجوشی ایده آل رآکتوریست که در آن واکنشهای زنجیره ای داریم. در واقع هدف اساسی در راه ساخت رآکتور همجوشی هسته ای زنجیره ای کردن آن است.اگر قرار باشد که ما در این راه انرژی صرف کنیم تا یک مقدار کمتر از آن را بدست بیاوریم مطمئنا این واکنش نه زنجیره ایست نه مفید.دانشمندان این رشته مفهومی به نام گیرانش را تعریف کرده اند که به معنی این است که مقداری انرژی صرف شروع واکنش کنیم و انرژی بیشتر از سلسله واکنشها بگیریم.در واقع در شرایط گیرانش واکنش زنجیره ای میشود.یعنی نه تنها انرژی تولیدی یک واکنش برای انجام واکنش بعد کافیست بلکه مقدار زیادی از آن هم اضافه است ومیتواند در اختیار ما برای تولید برق قرار بگیرد. 

اگر بخواهیم توکامک یا هر وسیله دیگر که همجوشی در آن انجام می شود توان مفید داشته باشد یعنی به ما انرژی بدهد باید شرایط خاصی داشته باشد. برای آنکه احتمال برخورد ذرات(یونهای) نامزد همجوشی بالا برود اولا باید دمای خیلی بالایی درون آن تولید بشود و رآکتور هم بتواند بخوبی دمای بالا را تحمل کند.(این دما در محدوده ده به توان هشت درجه کلوین می باشد!)دوما رآکتور باید این توانایی را داشته باشد که درونش چگالی زیاد از یونها را وارد کرد و سوم اینکه زمان محصور سازی در آن طولانی باشد. 

دمای بالا برای آن است که بتوانیم تقریبا مطمئن باشیم که می توانیم از سد محکم پتانسیل کولنی هسته ها بگذریم.چگالی زیاد هم برای این است که هر چه بیشتر احتمال برخورد های کارا بالا برود. 

در این مسیر قانونی وجود دارد که نام آن معیار لاوسون است.به کمک این معیار می شود محاسبه کرد که آیا شرایط طوری هست که واکنش به گیرانش برسد یا نه. 

معیار لاوسن = باید: مقدار چگالی*مدت زمان محصور سازی > ده به توان20ذره در متر مکعب باشد تا این واکنش به گیرانش برسد(البته بستگی مستقیم با دمای پلاسما دارد) 

اما به طور دقیق تر: 

برای رسیدن به شرایط مطلوب درواکنشهای گرما هسته ای که در آنها از سوخت دوتریم – ترتیم استفاده می شود دمای پلاسما (T) باید در محدوده یک الی سه ضرب در ده به توان هشت درجه کلوین و زمان محصورسازی(تی ای)(تی اندیس E) باید در حدود یک الی سه ثانیه و چگالی (n) باید حوالی یک الی سه ضرب در ده به توان بیست ذره بر متر مکعب باشد.برای آغاز به کار رآکتور یعنی برای رسیدن به کمینه دمای حدود ده به توان هشت کلوین باید از وسیله گرما ساز کمکی استفاده کرد. بعد از محترق شدن سوخت مخلوط پلاسما با ذرات آلفایی که در اثر احتراق اولیه بوجود اومده اند گرم شده و می توانیم دستگاه کمکی را از مدار خارج کنیم.از آن به بعد سرعت فعالیتهای همجوشی با افزایش دادن چگالی پلاسما افزایش پیدا می کند.با این وجود افزایش چگالی به بالای مرزهای تعیین شده و مطمئن به معنی به هم خوردن پایداری پلاسما و یا اینکه خاموش شدن رآکتور را در پی خواهد داشت یا فاجعه.به عبارت دیگه (در صورت افزایش چگالی پلاسما) برای پایدار کردن پلاسما زمان محصور سازی و دمای احتراق و صد البته حجم پلاسما و نقطه پایداری پلاسما با افزایش چگالی بالا تر رفته و شرایط را برای کار سخت تر می کند. به حالت تعادل در آوردن این ملزمات با شکل بندی رآکتور در کوچکترین اسپکت ریتو که به شکل بندی مغناطیسی آن بستگی دارد مقدور میشود. 

نسبت R به a را اسپکت ریتو می گویند

منبع: irannaz.com


تاریخچه انرژی هسته ای ایران

می دانیم که هسته از پروتون (با بار مثبت) و نوترون (بدون بار الکتریکی) تشکیل شده است. بنابراین بار الکتریکی آن مثبت است. اگر بتوانیم هسته را به طریقی به دو تکه تقسیم کنیم، تکه ها در اثر نیروی دافعه الکتریکی خیلی سریع از هم فاصله گرفته و انرژی جنبشی فوق العاده ای پیدا می کنند. در کنار این تکه ها ذرات دیگری مثل نوترون و اشعه های گاما و بتا نیز تولید می شود. انرژی جنبشی تکه ها و انرژی ذرات و پرتوهای بوجود آمده، در اثر برهمکنش ذرات با مواد اطراف، سرانجام به انرژی گرمایی تبدیل می شود. مثلا در واکنش هسته ای که در طی آن 235U به دو تکه تبدیل می شود، انرژی کلی معادل با 200MeV را آزاد می کند. این مقدار انرژی می تواند حدود 20 میلیارد کیلوگالری گرما را در ازای هر کیلوگرم سوخت تولید کند. این مقدار گرما 2800000 بار برگتر از حدود 7000 کیلوگالری گرمایی است که از سوختن هر کیلوگرم زغال سنگ حاصل می شود.

 

علم انرژی هسته ای، شکل گرفته از مطالعات در علوم شیمی و فیزیک در سده های اخیر می باشد. در 1879 با انجام یونیزاسیون یک گاز از طریق تخلیه الکتریکی به وسیله کراکس شروع شده و در 1897 توسط تامسون الکترون به عنوان ذره باردار مسئول الکتریسیته معرفی شد.

 

"رونتگن" در 1895 پرتو ایکس نافذ حاصل از یک لوله تخلیه را کشف کرد و "بکرل" در 1896 پرتوهایی مشابه (که امروزه لاندا می نامیم) را یا منشا کاملا متفاوت کشف کرد که منجر به کشف اورانیوم و پدیده ی پرتوزایی شد.

 

در 1905 "انیشتن" نتیجه گیری کرد که جرم هر جسمی با سرعت آن افزایش پیدا می کند و فرمول مشهور خود E=mc2 را که بیانگر هم ارزی جرم و انرژی است بیان نمود(کوری ها در 1898 عنصرپرتوزای رادیوم را جداسازی نمودند) در زمان انیشتین بررسی تجربی مقدور نبود و انیشتین نتوانست مفاهیم معادله خود را پیش بینی کند.

 

در اوایل قرن بیستم یک سری آزمایش با ذرات مختلف حاصل از مواد پرتوزا به فهم نسبتا شفاف ساختار اتم و هسته منجر شد. از کار "رادرفورد" و "بور" نتیجه گیری شد که اتم خنثی از نظر الکتریکی از بار منفی به شکل الکترون های احاطه کننده یک هسته مرکزی مثبت که قسمت اعظم ماده اتم را شامل می شود، تشکیل شده است. اگرچه هسته از ذرات مقید به یکدیگر از طریق نیروهای قوی هسته ای تشکیل شده است، تبدیلات هسته ای می توانند القا شوند یعنی بمباران نیتروژن با هلیم منجر به تولید اکسیژن وهیدروژن می شود.

 

در 1930 "بوته" و" بکر" بریلیم را با ذرات آلفای حاصل از پولونیم بمباران کردند و آنچه را که فکر کردند پرتوهای گاماست کشف کردند اما "چادویک" در 1932 نشان داد که باید نوترون ها باشند. در حال حاضر واکنش های مشابهی در راکتورهای هسته ای به عنوان چشمه نوترون به کار می رود. پرتوزایی مصنوعی اولین بار توسط "کوری" و" ژولیو" گزارش شد ذرات تزریق شده به داخل هسته های بور، منیزیوم و آلومینیوم ایزوتوپ های پرتوزای جدید عناصر متعددی را به وجود آورد. توسعه ماشین ها برای شتاب دادن ذرات باردار تا سرعت های بالا فرصت های جدیدی را برای مطالعه واکنش های هسته ای فراهم ساخت. سیکلوترون، طراحی و ساخته شده در 1932 به وسیله "لارنس" اولین سری از دستگاه های با توانمندی بالا بود.

 

کشف شکافت

طی سال های1930" ا نریکوفرمی" و همکاران وی در ایتالیا، تعدادی آزمایش با نوترون تازه کشف شده انجام دادند آن ها استدلال کردند که نبود بار نوترون آن را در نفوذ به هسته موثر می سازد. از جمله کشفیات فرمی، تمایل زیاد بسیاری از عناصر به کند کردن نوترون و تنوع رادیوایزوتوپ هایی بود که می توانست از گیراندازی نوترون تولید شود.

 

"برایت" و "وینکر" توضیح نظری فرآیندهای نوترون کند را در سال 1936 ارائه نمودند. فرمی اندازه گیری های توزیع هر دو نوترون سریع و کند را انجام داد و رفتار آن ها را از لحاظ پراکندگی کشسان، اثرات پیوند شیمیایی و حرکت گرمایی در مولکول های هدف توضیح داد.

 

تا این فاصله زمانی هنوز فرآیند شکافت شناسایی نگردید. تا اینکه در سال 1939 تا 1940 توسط فعالیت هان، اشتر اسمن و سپس فریش و... در انتها فرمی پدیده شکافت کشف شد.

 

کشف شکافت همراه با امکان انجام یک واکنش زنجیره ای با شدت انفجاری در برهه ای از زمان از اهمیت خاصی برخوردار بود زیرا جنگ جهانی دوم در 1939 شروع شده بود.

 

اولین واکنش زنجیره ای خود تقویت شونده

در سال 1939 "بور" به آمریکا آمد و در کشفیات "انیشتن" و "هان" شریک شد. وی همچنین "فرمی" را در کنفرانسی در واشنگتن ملاقات کرد. آنها برای اولین با وجود واکنش ذنجیره ای خود تقویت شونده را مطرح کردند. در این فرآیند اتم¬ها را برای تولید مقدار زیادی انرژی شکافت می¬دهند. دیگر دانشمندان در سرار دنیا در حال باور این مسئله بودند که می توان از شکافت هسته برای تولید انرژی استفاده کرد. این زمانی ممکن بود که مقدار زیادی اورانیم بتوانند با یکدیگر تحت شرایط مناسب ترکیب شوند و واکنش ذنجیره ای خود تقویت شونده ای را بوجود آورند که جرم بحرانی نامیده می شود.

 

فرمی و همکارش در سال 1941 طرح اولین طرح راکتور زنجیره ای اورانیم را ارائه دادند. مدل آن ها شامل مقداری اورانیم بود که در محفظه ای از گرافیت جمع شده بود تا مدلی از مواد شکافت پذیر را بسازد. در اوایل سال 1942 دانشمندان به دعوت فرمی در شیکاگو برای ارئه نظریات خود گرد آمدند و در همان سال آمادگی ساخت اولین راکتور هسته ای را پیدا کردند و در استادیوم شهر شیکاگو طرح خود را که علاوه بر گرافیت و اورانیم دارای کادمیوم( عنصری که نوترون ها را می شکافد) به نمایش گذاشتند.

 

پیشرفت انرژی هسته ای برای مقاصد صلح آمیز

اولین راکتور هسته ای تنها یک شروع بود. اولین تحقیقات در این رشته که تحت پروژه سری به نام "منهتن" صورت گرفت، برای ساخت بمب اتمی برای جنگ جهانی دوم بود. هرچند دانشمندانی هم بودند که روی راکتورهای شکافنده مواد دارای قابلیت شکافت در واکنش زنجیره ای کار می کردند، و این به تولید مواد شکافت پذیر بیشتری منجر شد. بعد از ایالات متحده سرمایه گذاری بیشتری را در جهت پیشبرد این علم برای منافع غیر نظامی انجام داد و در اوایل سال 1951 راکتور زاینده ای ساخت که می توانست الکتریسیته تولید کند.

 

بزرگترین پیشرفت در دهه 50 توانایی تولید تجاری برق بود که توسط راکتور آب سبک بود که در آن از آب معمولی برای خنک شدن هسته راکتور استفاده می شد. این موفقیت باعث شد که برنامه های هسته ای برای مقاصد تکنولوژیکی دیگر برنامه ریزی شود.

 

در پایان سال 1991 حدود 31 کشور توانایی تولید تجاری انرژی از راکتورهای هسته ای را یافتند که این نشانه پیشرفت جهانی در عرصه فناوری هسته ای بود.

 

در عرصه مدیریت پسماند، مهندسین در پی گسترش راهکارهای دفن و بازیافت می باشند و برنامه آنان اینست که هرچه می توانند اثرات محیطی و انسانی این فناوری را کاهش دهند.

 

تحقیقات در زمینه های دیگر در دهه 90 نیز ادامه یافت و درک شد که انرژی هسته ای علاوه بر تولید انرژی نقش مهمی را زمینه های دیگر همچون پزشکی، کشاورزی، صنعت و علم بازی می¬کند برای مثال پزشکان از رادیوایزوتوپ ها برای درک دلایل بروز بیماریها استفاده کرده و از انرژی هسته ای برای بالابردن تاثیرات طب سنتی استفاده کردند. همچنین باستان شناسان انرژی هسته ای را برای تعیین زمان دقیق یافته های خود بکار بردند، علاوه بر آن پرتو افکنی به غذاها ماندگاری آنها را افزایش داده و تاثیرات فریز کردن را روی از بین رفتن ویتامین مواد غذایی کم می کند.

 

ساختار نیروگاه اتمی

 طی سال های گذشته اغلب کشورها به استفاده از این نوع انرژی هسته ای تمایل داشتند و حتی دولت ایران 15 نیروگاه اتمی به کشورهای آمریکا، فرانسه و آلمان سفارش داده بود. ولی خوشبختانه بعد از وقوع دو حادثه مهم تری میل آیلند (Three Mile Island) در 28 مارس 1979 و فاجعه چرنوبیل (Tchernobyl) در روسیه در 26 آوریل 1986، نظر افکار عمومی نسبت به کاربرد اتم برای تولید انرژی تغییر کرد و ترس و وحشت از جنگ اتمی و به خصوص امکان تهیه بمب اتمی در جهان سوم، کشورهای غربی را موقتاً مجبور به تجدیدنظر در برنامه های اتمی خود کرد.

 

نیروگاه اتمی در واقع یک بمب اتمی است که به کمک میله های مهارکننده و خروج دمای درونی به وسیله مواد خنک کننده مثل آب و گاز، تحت کنترل درآمده است. اگر روزی این میله ها و یا پمپ های انتقال دهنده مواد خنک کننده وظیفه خود را درست انجام ندهند، سوانح متعددی به وجود می آید و حتی ممکن است نیروگاه نیز منفجر شود، مانند فاجعه نیروگاه چرنوبیل شوروی. یک نیروگاه اتمی متشکل از مواد مختلفی است که همه آنها نقش اساسی و مهم در تعادل و ادامه حیات آن را دارند. این مواد عبارت اند از:

 

1. ماده سوخت متشکل از اورانیوم طبیعی، اورانیوم غنی شده، اورانیوم و پلوتونیم است.

 

عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است. در این پدیده با ورود یک نوترون کم انرژی به داخل هسته ایزوتوپ اورانیوم 235 عمل شکست انجام می گیرد و انرژی فراوانی تولید می کند. بعد از ورود نوترون به درون هسته اتم، ناپایداری در هسته به وجود آمده و بعد از لحظه بسیار کوتاهی هسته اتم شکسته شده و تبدیل به دوتکه شکست و تعدادی نوترون می شود. تعداد متوسط نوترون ها به ازای هر 100 اتم شکسته شده 247 عدد است و این نوترون ها اتم های دیگر را می شکنند و اگر کنترلی در مهار کردن تعداد آنها نباشد واکنش شکست در داخل توده اورانیوم به صورت زنجیره ای انجام می شود که در زمانی بسیار کوتاه منجر به انفجار شدیدی خواهد شد.

 

در واقع ورود نوترون به درون هسته اتم اورانیوم و شکسته شدن آن توام با انتشار انرژی معادل با 200 میلیون الکترون ولت است این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یک گرم از اورانیوم در حدود صدها هزار مگاوات است. که اگر به صورت زنجیره ای انجام شود، در کمتر از هزارم ثانیه مشابه بمب اتمی عمل خواهد کرد.

 

اما اگر تعداد شکست ها را در توده اورانیوم و طی زمان محدود کرده به نحوی که به ازای هر شکست، اتم بعدی شکست حاصل کند شرایط یک نیروگاه اتمی به وجود می آید. به عنوان مثال نیروگاهی که دارای 10 تن اورانیوم طبیعی است قدرتی معادل با 100 مگاوات خواهد داشت و به طور متوسط 105 گرم اورانیوم 235 در روز در این نیروگاه شکسته می شود و همان طور که قبلاً گفته شد در اثر جذب نوترون به وسیله ایزوتوپ اورانیوم 238 اورانیوم 239 به وجود می آمد که بعد از دو بار انتشار پرتوهای بتا (یا الکترون) به پلوتونیم 239 تبدیل می شود که خود مانند اورانیوم 235 شکست پذیر است. در این عمل 70 گرم پلوتونیم حاصل می شود. ولی اگر نیروگاه سورژنراتور باشد و تعداد نوترون های موجود در نیروگاه زیاد باشند مقدار جذب به مراتب بیشتر از این خواهد بودو مقدار پلوتونیم های به وجود آمده از مقدار آنهایی که شکسته می شوند بیشتر خواهند بود. در چنین حالتی بعد از پیاده کردن میله های سوخت می توان پلوتونیم به وجود آمده را از اورانیوم و فرآورده های شکست را به کمک واکنش های شیمیایی بسیار ساده جدا و به منظور تهیه بمب اتمی ذخیره کرد.

 

2. نرم کننده ها موادی هستند که برخورد نوترون های حاصل از شکست با آنها الزامی است و برای کم کردن انرژی این نوترون ها به کار می روند. زیرا احتمال واکنش شکست پی در پی به ازای نوترون های کم انرژی بیشتر می شود. آب سنگین (D2O) یا زغال سنگ (گرافیت) به عنوان نرم کننده نوترون به کار برده می شوند.

 

3. میله های مهارکننده: این میله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآکتور اتمی الزامی است و مانع افزایش ناگهانی تعداد نوترون ها در قلب رآکتور می شوند. اگر این میله ها کار اصلی خود را انجام ندهند، در زمانی کمتر از چند هزارم ثانیه قدرت رآکتور چند برابر شده و حالت انفجاری یا دیورژانس رآکتور پیش می آید. این میله ها می توانند از جنس عنصر کادمیم و یا بور باشند.

 

4. مواد خنک کننده یا انتقال دهنده انرژی حرارتی: این مواد انرژی حاصل از شکست اورانیوم را به خارج از رآکتور انتقال داده و توربین های مولد برق را به حرکت در می آورند و پس از خنک شدن مجدداً به داخل رآکتور برمی گردند. البته مواد در مدار بسته و محدودی عمل می کنند و با خارج از محیط رآکتور تماسی ندارند. این مواد می توانند گاز CO2، آب، آب سنگین، هلیم گازی و یا سدیم مذاب باشند.

 

غنی سازی اورانیم

 سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ 235 به مقدار 7/0 درصد و اورانیوم 238 به مقدار 3/99 درصد تشکیل شده است. سنگ معدن را ابتدا در اسید حل کرده و بعد از تخلیص فلز، اورانیوم را به صورت ترکیب با اتم فلئور (F) و به صورت مولکول اورانیوم هکزا فلوراید UF6 تبدیل می کنند که به حالت گازی است. سرعت متوسط مولکول های گازی با جرم مولکولی گاز نسبت عکس دارد این پدیده را گراهان در سال 1864 کشف کرد. از این پدیده که به نام دیفوزیون گازی مشهور است برای غنی سازی اورانیوم استفاده می کنند.در عمل اورانیوم هکزا فلوراید طبیعی گازی شکل را از ستون هایی که جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور می دهند. منافذ موجود در جسم متخلخل باید قدری بیشتر از شعاع اتمی یعنی در حدود 5/2 انگشترم (000000025/0 سانتیمتر) باشد. ضریب جداسازی متناسب با اختلاف جرم مولکول ها است.روش غنی سازی اورانیوم تقریباً مطابق همین اصولی است که در اینجا گفته شد. با وجود این می توان به خوبی حدس زد که پرخرج ترین مرحله تهیه سوخت اتمی همین مرحله غنی سازی ایزوتوپ ها است زیرا از هر هزاران کیلو سنگ معدن اورانیوم 140 کیلوگرم اورانیوم طبیعی به دست می آید که فقط یک کیلوگرم اورانیوم 235 خالص در آن وجود دارد. برای تهیه و تغلیظ اورانیوم تا حد 5 درصد حداقل 2000 برج از اجسام خلل و فرج دار با ابعاد نسبتاً بزرگ و پی درپی لازم است تا نسبت ایزوتوپ ها تا از برخی به برج دیگر به مقدار 01/0 درصد تغییر پیدا کند. در نهایت موقعی که نسبت اورانیوم 235 به اورانیوم 238 به 5 درصد رسید باید برای تخلیص کامل از سانتریفوژهای بسیار قوی استفاده نمود. برای ساختن نیروگاه اتمی، اورانیوم طبیعی و یا اورانیوم غنی شده بین 1 تا 5 درصد کافی است. ولی برای تهیه بمب اتمی حداقل 5 تا 6 کیلوگرم اورانیوم 235 صددرصد خالص نیاز است. عملا در صنایع نظامی از این روش استفاده نمی شود و بمب های اتمی را از پلوتونیوم 239 که سنتز و تخلیص شیمیایی آن بسیار ساده تر است تهیه می کنند. عنصر اخیر را در نیروگاه های بسیار قوی می سازند که تعداد نوترون های موجود در آنها از صدها هزار میلیارد نوترون در ثانیه در سانتیمتر مربع تجاوز می کند. عملاً کلیه بمب های اتمی موجود در زراد خانه های جهان از این عنصر درست می شود.روش ساخت این عنصر در داخل نیروگاه های اتمی به صورت زیر است: ایزوتوپ های اورانیوم 238 شکست پذیر نیستند ولی جاذب نوترون کم انرژی (نوترون حرارتی هستند. تعدادی از نوترون های حاصل از شکست اورانیوم 235 را جذب می کنند و تبدیل به اورانیوم 239 می شوند. این ایزوتوپ از اورانیوم بسیار ناپایدار است و در کمتر از ده ساعت تمام اتم های به وجود آمده تخریب می شوند. در درون هسته پایدار اورانیوم 239 یکی از نوترون ها خودبه خود به پروتون و یک الکترون تبدیل می شود.بنابراین تعداد پروتون ها یکی اضافه شده و عنصر جدید را که 93 پروتون دارد نپتونیم می نامند که این عنصر نیز ناپایدار است و یکی از نوترون های آن خود به خود به پروتون تبدیل می شود و در نتیجه به تعداد پروتون ها یکی اضافه شده و عنصر جدید که 94 پروتون دارد را پلوتونیم می نامند. این تجربه طی چندین روز انجام می گیرد.

منبع: hawzah.net